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This paper examines the features of the flow field off the surface of an oscillating 
flat-plate airfoil immersed in a two-dimensional supersonic flow Although the 
exact linearized solution for a supersonic unsteady airfoil has been known for a 
long time, its expression in the form of a,n integral is not convenient for a physical 
interpretation. In  the present paper, the quintessential features of the flow field 
are extracted from the exact solution by obtaining an asymptotic expansion in 
descending powers of a frequency parameter through the repeated use of the 
stationary-phase and steepest descent methods. It is found that the flow field 
consists of two dominant and competing signals: one is the acoustic ray or that 
component arising from Lighthill’s ‘ convecting slab ’and the other is the leading- 
edge disturbance propagating as a convecting wavelet. The flow field is found to 
be divided into several identifiable regions defined by the relative magnitude of 
the signals, and the asymptotic expansions appropriate for each flow region are 
derived along with their parametric restrictions. Such intimate knowledge of 
the flow field in unsteady, supersonic flow is of interest for interference aero- 
dynamics and related acoustic problems. 

1. Introduction 
The piston theory for an oscillating airfoil in a supersonic flow, as it is now 

called, was first clearly enunciated by Lighthill (1953). On the basis of Hayes’ 
(1947) hypersonic approximation for a steady flow, he pointed out that the 
pressure at  a point on an airfoil surface oscillating in high Mach number flow is 
uniquely determined by the instantaneous vertical velocity of the airfoil at  the 
same point. Lighthill’s piston theory is not restricted to the linear situation; it 
can even handle the problems involving large disturbances. In the linear theory, 
however, the point relationship becomes further simplified to the extent that the 
perturbed pressure is directly proportional to the airfoil motion. 

Both the utility and limitations of the linear piston theory were investigated 
extensively by Landahl, Ashley & Mollo-Christensen (1955). They showed that, 
for the piston theory to be valid, the requirement of high Mach number flow can 
be replaced by the condition that either a frequency parameter or the product of 
the Mach number and the frequency parameter should be sufficiently high. 
Under these circumstances, the linearized governing equation can be approxi- 
mated by a simplified form which yields the result of the piston theory as a 



812 1M. Kurosaka 

Y 

----*s 
FIGURE 1. Definition sketch. 

solution. By means of a numerical comparison of the piston theory with the 
exact values of aerodynamic coefficients, as tabulated by Garrick & Rubinow 
(1946), they found that even a t  a Mach number as low as +Q the accuracy of 
the theory persists, provided that the frequency parameter is larger than 2 .  
A historical survey of the piston theory and its applications can be found in 
Ashley & Zartarian (1956). 

All these investigations dealt solely with the pressure on the airfoil surface. It 
seems equally interesting, however, to pose the following question. What is the 
relationship between the flow field off the airfoil surface and the motion of that 
surface Z Knowledge of the flow field off the airfoil surface is not only of interest 
in its own right, but also has significance in problems involving aerodynamic 
interactions such as an airfoil in a wind tunnel, cascaded airfoils and wing-body 
interferences, and in related acoustic subjects. It is, in fact, a simple matter to 
construct a formal extension of the piston theory to the flow field off the airfoil 
from the following geometrical-acoustics viewpoint, which also agrees with 
Lighthill’s original concept of a ‘convecting slab ’. If the frequency of the oscil- 
lating airfoil is sufficiently high, the disturbance created by its vertical motion is 
transmitted in the form of a ray, whose path is the vectorial sum of rectilinear 
propagation in a direction perpendicular to the airfoil and simultaneous con- 
vection in the downstream direction at  the free-stream velocity. 

Suppose that an airfoil oscillates about the x axis with a prescribed vertical 
velocity V ( x )  exp ( iwt ) ,  where o is the frequency (see figure 1). Let U, and a, be 
the free-stream and sound velocity far upstream. According to the foregoing 
argument, the signal received a t  a position p(x ,  y) a t  time t should be the same 
as the signal originallyemitted a t  some time, t-At,, say, from the origin of 
the acoustic ray, located on the airfoil surface and a t  some distance Ax, upstream 
of x; i.e. 

V ( x  - Axo) exp [iw(t - At,)]. 
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During the time lag At,, the signal has propagated vertically for a distance 
equal to y, with the sound velocity am. Hence At, and y are related by 

At, = y/am. 

During the same interval, the signal has been convected in the downstream 
direction for a distance equal to Ax, at the free-stream velocity Urn; that is to say 

AX,  = Urnat, = M,y. 

Consequently, the signal at the point p ( x ,  y) at time t is given by 

v x  - K J Y )  exp [ i 4  - y/arn)l. (1 .1)  

Since the above argument is based on the notions of geometrical acoustics, it is 
also possible to derive (1.1) in a more formal manner as a high frequency limit. 
Hanin (1960), for example, applied the WKB method to the linearized governing 
equation and derived (1.1) as the leading term of the asymptotic series in powers 
of a frequency parameter. (It will be shown, however, that such a formal pro- 
cedure appears to give inadequate results for the next higher order term on the 
surface and, in a flow field away from the airfoil, even for the leading term.) 

According to (l.i), the geometrical acoustic rays, or the disturbances resulting 
from the extended form of the piston theory, propagate along the lines 

x-M,y = constant 

and vanish outside the leading ray defined by x = N, y .  Since the Mach line 
emanating from the leading edge is given by x = (Mz  - l)$y, the leading ray is 
contained within the Mach line (figure 1). At first glance, the disappearance of 
(1.1) outside the leading ray seems to imply that, as far as the leading term is 
concerned, there may exist an additional zone of silence between the Mach line 
and the leading ray. The questions that arise immediately are the following. 
What happens to the effect of the disturbance created by the bow shock? Will the 
pressure rise across the bow shock always be a higher order term than the term 
given by (1.1)? If not, then in what regime of the flow field does the extended 
form of the piston theory cease to be the leading term and how should it be 
corrected! These are some of the issues that the present paper will resolve. 

In  what follows, we restrict the discussion to the two-dimensional problem and 
start from the exact linearized solution for the flow around an oscillating airfoil. 
To be sure, such a linearized treatment suffers from an inherent breakdown in a 
region sufficiently far from the airfoil. However, both in the near and the inter- 
mediate region, the linearized solution can still be expected to give a reasonably 
accurate description of the flow. By the repeated use of the stationary-phase 
and/or steepest-descent method, an asymptotic expansion of the linearized 
solution will be constructed as a descending series in a frequency parameter; the 
parameter to be used is a compressible reduced frequency based on the hyper- 
bolic radius defined as op/amm2, where p = (x2 - m2y2)i and m = (Hz - l)+. 
Although the evaluation of an asymptotic series for a point on the airfoil surface 
is not of primary concern for the aforementioned purpose, because of its simple 
derivation it provides a useful check on the asymptotic series for the external 
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flow field. Therefore, we shall f i s t  derive an asymptotic series €or a field point on 
the airfoil surface, and then proceed to obtain an asymptotic expansion for a 
point oflthe surface, the latter being the main objective of the present paper; the 
expression so derived will be valid for large values of the frequency parameter, i.e. 
for high frequency oscillation and/or in the region sufficiently far away from the 
bow shock. We shall also examine how such flow fields are interconnected to the 
now field in the vicinity of the bow shock. 

2. Exact solution expressed as a double integral 
The velocity potential for the flow field around an oscillating airfoil in a super- 

sonic flow is given (e.g. Miles 1959, p. 50) by 

1 
@(x, y) = - sgn (y) H ( x  - my) exp 

n2. 

where 

k = w/a,, na = (M:- I)&, N, > 1, sgn(y) = 1 for y z  0. (2.2) 

J ,  is the zeroth-order Bessel function of the fist kind and H ( x )  is the Heaviside 
step function. To be more precise, @(x, y) is not the velocity potential itself but 
rather the amplitude of the perturbed velocity potential $’(x, y, t ) ;  that is, 

$’ = @(x, y) exp (iwt).  

The potential 4’ satisfies the linearized governing equation 

with the following boundary condition: 

ay ay 
at + U,- ax = - H (  x) V ( x )  exp ( iwt ) ,  

where jj(x) t )  is the vertical co-ordinate prescribing the airfoil surface and V ( x )  is 
the amplitude of the vertical velocity of the airfoil. 

Since the frequency parameter k appears in both the arguments of the 
exponential and the Bessel function inside the integral sign of (2.1)) we cannot 
directly apply such standard methods as the stationary-phase method to obtain 
an asymptotic form for large k .  Likewise, direct substitution of the asymptotic 
form of J, inside the integral would not be valid, because its argument becomes 
zero at the upper end of the integral. The difficulty may be overcome by sub- 
stituting for J, the expression 
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and changing the order of integration, @(x, y) is then recast as a double integral, 
and for y > 0 is given by 

1 
r m  

@(x, y) = - I l ( x  - my) exp (- i k x 2 )  J'" Id8 ,  
- t n  

(2-6) 
x - m,zi sin 8 

where 

In  the above integrand, k appears in the argument of the complex exponential 
and therefore the integral is now amenable to the direct application of the 
stationary-phase or saddle-point method. Although in the equation under con- 
sideration V ( x )  is an arbitrary function of x ,it is assumed that V ( x )  is continuous, 
and more important, that it does not influence the stationary-phase point or the 
saddle point determined by the exponential term in the integrand. This latter 
restriction precludes such V(x) as exp ( ikx ) ,  exp (ikx2), etc., which, when com- 
bined with the exponential term in the integrand, would affect the position of 
the stationary point and complicate the subsequent analysis. However, the class 
of functions admissible as V(x) does include, for example, the one corresponding 
to the following g(x, t ) ,  appearing in (2.4): 

y(x, t )  = f (4 exp (W, (2.7) 

where f (x) is an arbitrary continuous function of x not involving w or k ,  which is 
the case of interest for most purposes. 

3. Asymptotic expansion for a point on the airfoil surface 

y = 0 in (2.6) and make the change of variables a = x7. Then 
To obtain the asymptotic expansion for a point on the airfoil surface, we set 

where h == kx = oxla,. (3.2) 

We seek the asymptotic behaviour for large values of hMw/m2, and apply the 
method of stationary phase to (3.1).  By substituting the resulting asymptotic 
form of I into (2.5) for y = 0 and evaluating some elementary integrals involved, 
we find 

~ ( x ,  0) = (mn)-lH(x)exp (-ih%) (-inmxV(x)-exp 1 

h 

1 + rmx2 V'(x) M, - A2 exp 
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The stationary-phase method is again applied to the integrals above involving 
exponential functions for him2 9 1. A power series in h = kx follows at  once: 

I 
+(Mm-l)expjm+i-  -ikx ")I 4 -+M,V'(x)- (kx)i k 

+ O( l / (k .z . ) t ) }  for kx/m2 9 I. 

The corresponding perturbed pressure p f  is given by 

(3.3) 

(3.4) 
where p m  is the density far upstream. This is an expression valid for rapid 
oscillation and/or for a point far from the leading edge. The first term within the 
braces in this equation corresponds to the expression from the classical piston 
theory. The second term is proportional to the vertical velocity V(0)  at the 
leading edge of the airfoil and therefore represents the effect of the pressure rise 
across the bow shock formed at  the leading edge. From the form of the arguments 
of the exponential terms, it is observed that such a disturbance propagates along 
the airfoil surface in the downstream direction at  two different velocities equal, 
not surprisingly, to U, a,, respectively. As the distance x from the leading 
edge increases, the leading-edge disturbance attenuates at  a rate x-4, showing a 
typical characteristic of a cylindrical diffraction wave. Also to be noted is that 
the term of order (kx)-l has vanished. 

Hank (1960) suggested the means to obtain the higher order correction terms 
to the piston theory, including the effect of airfoil surface curvature. He applied 
a WKB-type method to the original differential equation (2.3); in deriving an 
asymptotic expansion, he used formal standard expansions in integer powers of 
(kz)-1. A comparison of his result, as applied to the present case of a flat plate, with 
(3.4) reveals that the first term is the same, as expected; the absence of the term of 
order (kx)-l is also common to both. In Hanin's result, however, there is no term 
of order (kx)-* corresponding to the second term of the present result or the 
cylindrical diffraction wave. This absence is a direct consequence of his formal 
expansion scheme in the integer powers of (kx) - l .  

On the other hand, when V ( x )  = constant, the present result, including the 
term of order (kx)-$, reduces to Candel's (1972) solution for the Sommerfeld 
diffraction problem in a supersonic flow. (Candel's solution and its connexion 
with the present result will be discussed in a wider context in 5 6.) It appears, 
therefore, that results based on a formal expansion scheme in integer powers of 
(kx)-l such as that adopted by Hanin may not be adequate with respect to the 
higher order terms for a point on the airfoil surface. 
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So far we have examined the case of large values of a compressible reduced 
frequency. For small values of the reduced frequency, the pressure distribution 
can be obtained directly from (2.1) evaluated at y = 0. We thus find that 

This is an expression valid for slow oscillation and/or near the leading edge. The 
first term in braces in the above equation corresponds to Ackert's solution. 
Consequently, the pressure obtained by multiplying by a time factor exp ( iwt )  
represents a quasi-steady solution, as expected. When the first term in braces in 
(3.5) is compared with the piston-theory term of (3.4)) it is observed that, at large 
values of M,, the first term of (3.5) approaches the piston-theory term. For a 
highly supersonic flow, therefore, the pressure distribution at  any point on the 
airfoil, including those points near the leading edge, can be approximated by the 
piston theory. On the other hand, in a low supersonic flow range, the pressure 
given by the piston theory loses its accuracy near the leading edge. This is 
precisely the reason why the aerodynamic coefficients computed from the piston 
theory alone become less accurate in a low supersonic range. At a low supersonic 
Mach number and in the case of flutter analysis pertinent to low frequencies, 
Morgan, Huckel & Runyan (1958) proposed the use of a quasi-steady solution a t  
any point on the airfoil, its linear term being equal to the first term of (3.5). 

4. Asymptotic expansion for a point off the airfoil surface 
In (2.6) we introduce a new variable of integration cr defined by 

a = x-mycoshu. 

It is also convenient to use the following hyperbolic co-ordinates (p, p) instead of 
the Cartesian co-ordinates (x, y) : 

x = p coshp, my = p sinhp, 0 < p,p, (4.1) 

(4.2) 

and we note especially that p = 0 along the bow shock. With these substitutions, 
(2 .6)  becomes 

(4.3) 

where h = kp, (4.4) 

where p is the hyperbolic radius given by 

p = (x2-m2 Y), 2 + 

V(p coshp - p  sinhp cosh a) exp (hh(cr)) sinh ada ,  

sin 0 
M, 

coshp-sinhpcoshcr+-sinhpsinhcr (4.5) 

and c2 = c0sh-l (coth p) . 

In  9 3, the stationary-phase method was used at  this point. However, in order to 
carry out the subsequent integration with respect to 8, it is more expedient to 

52 F L M  62 
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derive the asymptotic form of the above integral I by the steepest-descent 
method; the saddle point is given by 

(T = 6, = tanh-l (sin B/M,). (4.6) 
Whether or not the saddle point is located within the path of integration of (4.3) is 
found b depend on the sign of x - M, y and on 8. At present it suffices to examine 
the case x 2 M, y, or the flow field contained within the leading ray. For such a 
case, the position of the saddle point and the appropriate steepest-descent paths 
in the cr plane, where n = 6 + i r ,  are shown schematically in figures 2 (a) and ( b )  
for 0 < 8 < i n  and - in  < 8 < 0 respectively. Equation (4.3) is then written as 

Il++I2++I3++I4+ for 0 < 8 6 &r, (4.7u) 
I = {  ( 4 . 7 b )  

I,- + 14- for -in < 8 d 0, 

where the integration paths are designated by the suffix. Substituting (4.7) into 
(2.5) a i d  observing that (i) steepest paths 4 +  and 4 -  are the same and (ii) the 
integrnl of I,, from 0 to $7 is equal to the integral of I,- from - to 0, we obtain 

@ = QP + @& (4.8) 

where 

and 

( 4 . 9 4  

(4.96) 

with 9 = ( m ~ - ~ H ( x - m y ) e x p (  -ikxM,/rn2). (4.9c) 

As will be shown later, the term OD turns out to be the piston-theory term and is 
therefore designated by a subscript p ,  while (DZd represents the leading-edge 
disturbance, hence the subscript Id. As stated, we first evaluate the integrand 
I appearing in ( 4 . 9 ~ )  and in (4.9b), which itself is an integral with respect to (T 

given by (4.3)) through the method of steepest descent and then evaluate the 
integration with respect to 8 by the method of stationary phase. I n  the course of 
this, we encounter a slight complication which elicits a comment. Both in 11+ 
and 14+, the leading term of the asymptotic expressions of the first integral with 
respect to n7 which appears in the square-root, vanishes precisely a t  one of the 
end points of the subsequent integrations with respect to 8; in 11+, this happens a t  
any point in the flow field and in I,+, this occurs only a t  those points located on 
the leading ray. With this in mind and by making use of the following definite 
integral, 

Jrn+psinO exp [(~sin9)2]erfc(psin8)d~ = in(1 -expp2erfcp), 

which may be verified in a straightforward way by expanding the integrand as a 
power series in and using the asymptotic form of the right-hand side, we obtain 
the following results for OP and 

(4.10) 
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' I  

- f a  

FIGURE 2 .  Steepest-descent paths in CT plane for ( a )  0 < 8 < &r and ( 6 )  -371 < 8 < 0. 
CT = f +  ir. The steepest paths are as follows. 

sinh 8 

M m  
=coshp--, y < O .  

and 

Qd N -2- tH(x-my)p V(0)exp 

(4.11) 

52-2  
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where b* = 2 i ( ~ 0 ~ h p  F JIM,), ( 4 . 1 2 ~ )  

Q* = &(l T ~oshp/Mm)2(~oshpT l/Mm)-'. (4.12 b )  

Since (4.11) shows that a,, is proportional to V(O), Qzd represents in fact the 
disturbitnee a t  the leading edge. Note that in (4.11) there are two complementary 
error functions with different arguments, hMmm-2 Q*. It can be shown that for 

and it follows that, at  any point in the flow field within and on the leading ray, one 
argument of erfc, IhM,m-2Q2_1, is always large for large hM,/m2. Thus, 
erfc [(hM,m-2Q-)k] can always be expressed inits asymptotic form. On the other 
hand, 

Noting that, along the leading ray (x = N,y), (4.1) yields 

l Q + l  = $(I - cOshp/Ma)2 (coshp- l/M,)-'. 

coshp. = x(x2-m2y2)-* = J1,; (4.13) 

we find that Q+ vanishes there. Thus, even for large hMm/m2, the other argument 
of erfc, IhM,m-2Q+I, cannot always be large. 

Consider, however, the flow field far from the leading ray where 

IhMmm-2L2+1 % 1; 

both erfc [(hMmm-2Q+)B] and erfc [(hMmm-2Q-)*] can then be expressed in their 
asymptotic forms valid for large values of their arguments. We thus obtain 

QZd N i ( 2 ~ r ) - ~ H ( x - - r n y ) m ~ M ; ~ p V ( O )  exp 

x (exp (2-i:) (I-=) coshp -l +exp (s+ia) 
h 

(4.14) 

On the other hand, in the neighbourhood of the leading ray, the leading term 
comes only from erfc [(hMmm-2L2+)9]. From the asymptotic expansion of erfc (x) 
near x == 0, we have 

h 
Qld - Q 1, 2$ 1. (4.15) 

5. Description of the flow field 

flow field. From (4.8), the velocity potential is given by 
We now synthesize the solutions obtained so far and discuss the features of the 

Q = Q P + Q Z d ,  (5.1) 
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where the first term Qp is always given by (4.10), the leading term of which is of 
order h-l. Expressed in the Cartesian co-ordinate system, (4.10) becomes 

for kp- -1 .  
1 

QP = - iIl(x - M, y )  V(x - iW, y )  exp ( - iky)  - + 0 - 
m2 

(5.2) 
/I (&) 

If the time factor exp ( id )  is restored, the leading term of the above equation 
becomes 

- ik-l V(x- M, y )  exp [iw(t - y/a,)], 

which is in fact the extended form of the piston theory, derived in the introduction 
from physical arguments. We note again that the piston-theory term vanishes 
completely in the region outside the leading ray. 

The second term, QLd of (5.1), which represents the effect of the leadiiig-edge 
disturbance, changes its magnitude considerably, depending on the field point. 
We divide the flow field contained within the leading ray into two regions, one 
far from the leading ray and the other near it, and begin with a discussion of the 
former region. 

5.1. Flow field inside and away from the leading ray 

I n  the region away from the leading ray (x = N, y), @Lcl is given by (4.14), and in 
such a region (5.1) becomes 

@ = -iH(x-M,y) V(x-M,y)exp(-iky)/k 

[ ("kp ikx*Wm J) + i (  27r-6 H(x - m y )  m2 V (  0) exp - - - - 
m2 m2 'ii 

where !2+ = &(I - c o ~ h ~ / M , ) 2 ( c o ~ h ~ -  1/LWm)-'. (5.4) 

The parametric restriction imposed on (5.3) implies that, in addition to the 
requirement that the point in the flow field has to be sufficiently far from the 
bow shock, the airfoil should be oscillating rapidly and/or the point be far from 
the leading ray. If y is set equal to zero in (5.3), it in fact reduces to (3.3), or the 
potential on the airfoil surface obtained in 3 3. I n  that section, it was noted that 
the disturbance created a t  the leading edge propagates along the airfoil surface 
with two different velocities: U, i a,. It is only natural to  expect that  this 
observation can be generalized even to  a point off the airfoil surface, which we 
next proceed to confirm. 

With regard to the second term of (5.3), we focus our attention on the complex 
exponential terms with two different arguments: & ikp/m2 - ikxM,/m2. These 
can be identified as corresponding to two diffraction wavelets emanating from the 
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c,T -{ 
FIGURE 3. Two wavelets a t  p(x , y ) .  

leading edge and passing a given point p(x, y) a t  time t .  Two such familiar wave- 
lets C, and C, are shown in figure 3. These diffraction wavelets represent the 
disturbance generated at the leading edge at  a time t - 7, before t ;  i.e. 

exp [io(t - T)]. 

According to the elementary notion of wavelet propagation in a flowing medium, 
during the time interval 7, the centre of the wavelet has been convected a distance 
equal to U,7, while its radius has increased to a,7. The time delay r corre- 
sponding to the point p(x, y) is given by the relation (x- Um7)2+y2 = a:+, 
which yields 

7 = ( 2 p + xMm)/a,m', 
where the positive sign corresponds to the receding wavelet C, and the minus sign 
to the advancing wavelet C2. Consequently the disturbance exp [iw(t  - T)] is 
identified as 

(5 .5 )  

These are indeed identical to the two complex exponential functions that 
appeared in the second term of (5.3). In connexion with the second term it is 
of interest to  note that the decay rate of the leading-edge disturbance or a 
cylindrical diffraction wave, which, in a stationary medium, is inversely pro- 
portional to  the square-root of the distance r = (x2 + y2)t from the origin, can be 
simply obtained in the present case through the formal replacement of r by the 
hyperbolic radius p. Observe also that the amplitude (Mm-x/p)-l of the 
advancing wavelet is always larger than the amplitude (M,+x/p)-l of the 
receding wavelet, as expected. Furthermore, since M,-x/p = 0,  formally at 
least, on the leading ray, the ratio of the amplitude of the advancing wavelet 
to that of the receding wavelet increases as the point p(x, y)  approaches the 
leading ray. This fact will be recalled in the next subsection. 

exp (iot) exp [ & ikp/m2 - ikxM,/m2]. 
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5 .2 .  Flow field inside and near the leading ray 

I n  the neighbourhood of the leading ray, Qld is given by (4.15), which has the same 
order, O(h-l) ,  term as CDP. Thus CD becomes 

CD = - iH(x - H, y) V(x - M, y) exp ( - iky)/lc + &X(x - my) V ( 0 )  exp ( - iky)/k 

We have pointed out that the first term represents the extended form of the 
piston theory. The second term can be identified again as the diffraction wavelet 
emanating from the leading edge. One can observe this by noting that one of the 
complex potentials of ( 5 . 3 ) ,  that  corresponding to the advancing wavelet, 
exp (ikp/m2- ikxM,/m2), reduces, along the leading ray, to exp ( - iky), which 
appears in the corresponding second term of (5.6). (The receding wavelet, the 
intensity of which has been found to become smaller than that of the advancing 
wavelet as the field point approaches the leading ray, would appear as the higher 
order term.) As another salient point, note that the same expression, exp ( - iky), 
appears in the first term of (5.6) and furthermore, along the leading ray 
(x = M, y), the amplitude V ( x  - M, y) of the first term is reduced to that of the 
leading-edge disturbance, V (  0). This implies that the geometrical-acoustics 
signal is also emitted from the leading edge and arrives a t  a point on the leading 
ray after the same time delay as that of the diffraction wavelet. I n  the limit. 
when one approaches the leading ray from its inside, (5 .6)  becomes 

i 1 kP = --V(O)exp(-iky)-+O - for - $ 1, a+ = 0. ( 5 . 7 )  
2 k [(k:)$l m2 

Thus the leading ray is a demarcation line along which the leading term of the 
velocity potential is precisely equal to half of the value given by the piston theory 
and outside which the extended form of the piston theory vanishes identically. 

I n  the results obtained by formal application of the WKB method, the leading 
term everywhere in the flow field is given by the piston-theory term corre- 
sponding to  ( 5 . 2 ) .  It therefore fails to  exhibit the foregoing intricate feature of 
the flow field off the airfoil surface; the inability of the formal WKB method to 
derive the higher order term on the airfoil surface was discussed in § 3. 

I f  kpM,m-2 1 a+] takes an intermediate value such that neither 

kpM, m-2 I Q + I  $ 1 nor 

is satisfied, the predominant term for kp/m2 $ 1 comes from the following com- 
bination of the piston-theory term and the advancing-wavelet term : 

kpH,m-2 I !2+ I < 1 

CD = - iH(x - M, y) V(x - M, y) exp ( - iky)/k 



824 M .  Kurosaka 

5.3. Flow field outside the leading ray 

Outside the leading ray, the extended form of the piston-theory term vanishes 
abruptly. Since the velocity potential should be continuous across the leading ray, 
this implies that, in order to make up for such a loss, the intensity 

+ i iV(0)  exp (-iky)/k 

(the second term of (5.6)) of the diffraction wavelet just inside the leading ray 
should suddenly increase to - &i V ( 0 )  exp ( - iky)/k (the right-hand side of (5.7)) 
just outside it. This does not mean that the diffraction effect undergoes a dis- 
continuous jump, for the higher order terms make the transition smooth. 

Finally, consider the flow fieldin the neighbourhood of the bow shock (x = my). 
Such a flow is a particular case belonging to the more general class, subject to the 
parametric restrictions kM,m-2(x -my) < 1 and kp/m2 < 1. Under such restric- 
tions, (2.1) yields 

1 
@(x, y) - ,H(x-my)exp 

Setting y equal to zero reduces this to the quasi-steady solution on the airfoil 
surface discussed in 3 3. I n  general, the equation under consideration shows that 
such a quasi-steady flow emanating from the airfoil surface propagates, without 
dispersion, along the Mach line. The parametric restrictions imposed on (5.9) 
imply that the airfoil should be oscillating slowly and/or the point in the flow 
field be sufficiently close to the bow shock. In  the latter case, (5.9) becomes 
further simplified to the following form: 

Q x ,  y) - m-lH(x-my)exp( -ikM,x/m2) V ( 0 )  (X-my). (5.10) 

This again represents the leading-edge disturbance. The argument of the com- 
plex exponential appearing in the above equation is observed to be equal to that 
of the complex exponential in the second term of (5.3) if p = (x2-m2y2)) is set 
equal to zero; this indicates that the quasi-steady disturbance created a t  the 
leading edge in fact propagates by means of the diffraction wavelet along the bow 
shock. 

5.4. Summary of flowJie1d 

The entire structure of the flow may now be summarized as follows. The flow 
field is comprised of two dominant components, both of which are signals 
originating a t  the airfoil surface but propagating with distinctly different 
patterns. One of the signals corresponds to the geometrical-acoustics term or the 
extended form of the piston theory. It is emitted from an (any) oscillating point 
on the airfoil and propagates in the form of a ray; its path is rectilinear and the 
vectorial sum of the acoustic propagation in the direction normal to the airfoil 
surface and convection in the downstream direction at  a free-stream velocity. 
It vanishes completely in the region between the leading ray and the initial Mach 
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line originating from the leading edge. Inside the leading ray, this signal pro- 
pagates without suffering any change in its initial intensity. 

The other signal propagates in the form of the diffraction wavelets emanating 
from the leading edget, whose growth is contained within the Mach cone. Its 
initial strength corresponds to the quasi-steady pressure rise across the bow 
shock formed at  the leading edge; as the diffraction wavelet spreads out the effect 
of the leading-edge disturbance carried by the wavelet attenuates but, even on 
the same radius of a given wavelet, its intensity exhibits considerable variation 
along its circumference. (Such a variation should not be unexpected because of 
the strong dependence of the intensity on the angle of diffraction in the Sommer- 
feld diffraction problem with a stationary medium, certain connexions of which 
with the present problem will be discussed in the next section. However, in the 
present case the non-uniformity of the intensity is further enhanced by the fact 
that all the disturbances are contained in a narrower region downstream of the 
bow shock.) Consequently, the relative magnitude of these two competing signals 
varies in a rather complex way, dividing the flow field into several identifiable 
regions. In  the following description of the flow field, we fix both the frequency 
w and the Mach number and change only the location of the point in the flow field. 

(i) The flow field away from the leading ray but contained within it is given 
by (5.3), provided that the compressible reduced frequency based on the hyper- 
bolic radius is sufficiently large. Therein the geometrical-acoustic term dominates 
over the leading-edge disturbance term. 

(ii) This situation includes the flow field on the airfoil surface as a particular 
case: the dominant signal can be identified to be the same as the one given by the 
classical piston theory. 

(iii) As one approaches the leading ray, the intensity of the leading-edge 
disturbance increases, the leading term being given by (5.8). Along the leading 
ray, the leading-edge disturbance effect becomes of the same order as the piston- 
theory term, reducing the latter by half, as given by (5.7).  

(iv) Beyond the leading ray, the signal due to the piston-theory term 
vanishes and the only contribution to the dominant term comes from the 
diffraction wavelet. As the wavelet spreads out, the quasi-steady disturbance 
created at  the leading edge propagates without dispersion along the initial Mach 
line in the manner given by (5.10). 

6. Relation of the present solution to the Sommerfeld diffraction 

It is fitting at this point to note the connexion between the subject treated 
in the present paper and the Sommerfeld diffraction problem of a plane wave 
incident on a semi-infinite plate. In fact, certain features of the Sommerfeld 
diffraction problem, with a stationary medium, are found to occur also in the 
present solution. As an example, the phase lags of & in the diffraction wavelet 
term of (5.3) are the same as the apparent phase jump discussed by Sommerfeld 

t Any additional discontinuities in the surface velocity would similarly generate 
diffraction wavelets. 

problem 
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(1954, p. 262). Also the sudden increase of the diffraction wave intensity across 
the leading ray, pointed out in 5 5.3, is similar to the diffraction band phenomena 
described by Sommerfeld and by Morse & Ingard (1968, p. 453). 

Recently, Candelt (1972) obtained the solution of the Sommerfeld diffraction 
problem in a supersonic flow. He used the Fourier transform method. As the 
integration contour in the Fourier transform plane, an elliptical contour was 
chosen in the supersonic flow (hyperbolic field) rather than the hyperbolic 
contour suitable for the original Sommerfeld diffraction problem in a stationary 
medium (elliptic field). For normal incidence, the induced potential in his 
problem, or the total potential minus the incident wave, should agree with the 
present velocity potential. This situation of normal incidence is equivalent to 
setting V ( x )  = constant ( =  ik) in (5.3) and (5.7) of the present analysis, which 
corresponds to the particular case of an airfoil executing flexural motion. The two 
results, those of the present paper and the calculation of Candel, are easily shown 
t,o be the same. 

We reiterate at this point that our solution is based on an airfoil executing 
arbitrary motion. It is of special interest to observe that the generalization 
afforded by the present solution readily allows the formal replacement of 
V ( x )  = constant by V ( x  - M, y) and V(0)  in the leading two terms of the asymp- 
totic expansions. 

7. Concluding remarks 
It has been the intent of the present paper to display the features of the flow 

field off the surface of a rapidly oscillating airfoil immersed in a supersonic flow. 
Direct scrutiny of the exact integral representation involving a Bessel function 
is, however, not well suited for the examination of the underlying traits of the flow. 
The physical interpretation of the flow field, as summarily described in $5.4,  is 
found most effectively from the asymptotic expansions of the integral repre- 
sentation. A feature of the present analysis is that, by using a suitable integral 
formula for the Bessel function, the integral representation is transformed into 
a double integral to which one can repeatedly apply the method of steepest 
descent or stationary phase. I n  fact this enables one to derive the asymptotic 
expressions appropriate for the various regimes of the flow field in a natural and 
orderly manner and their parametric restrictions can be specified explicitly; the 
other methods, such as the WKB method, seem to miss some of the crucial 
features brought out by the present method. Another point worth re-emphasizing 
is that in the present analysis the airfoil motion is arbitrary; such generalized 
treatment offers the advantage that, not only can it obviously cope with a wide 
variety of airfoil motion, but also, while retaining the simple appearance of the 
asymptotic expansions, the physical meaning associated with each term of the 
series becomes clearly evident. 

The author is grateful to Dr S. M. Candel for making him aware of his thesis work when 
the present paper was nearly complete. 
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valuable comments during the entire course of the present investigation. He is 
also appreciative of the constructive comments of the referees, which led to the 
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